

Lecture 9a

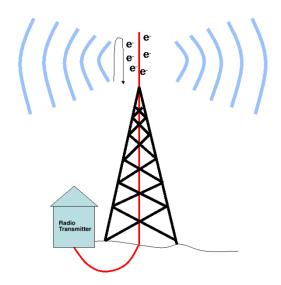
Synchrotron Radiation

Sarah Cousineau, Jeff Holmes, Yan Zhang

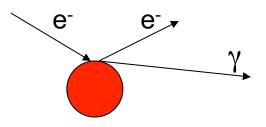
USPAS January, 2011

Radiation from an Accelerated Charge

- A charge that is accelerated emits electro-magnetic radiation
- Examples you may be familiar with:
 - EM radiated from an antenna: time-varying current runs up and down the antenna, and in the process emits radio waves



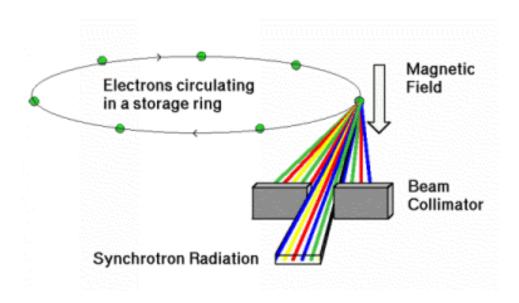
 Bremsstrahlung: (braking radiation). An electron is accelerated when it collides with an atomic nucles, emitting a photon



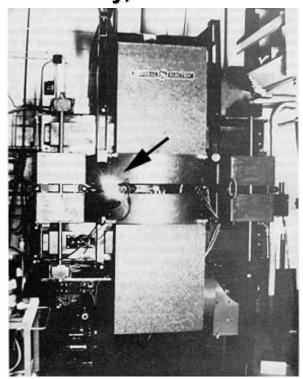
Atomic nucleus

Synchrotron Radiation

 Synchrotron radiation is electromagnetic radiation emitted when charged particles are radially accelerated (moved on a circular path).

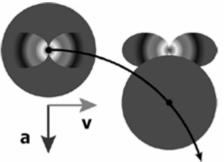


•Synchrotron radiation was first observed in an electron synchrotron in 1947: the 70 MeV synchrotron at General Electric Synchrotron in Schenectady, New York



Longitudinal vs. Transverse Acceleration

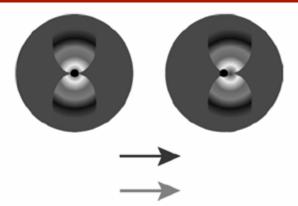
Perpendicular case:



Radiation field quickly separates itself from the Coulomb field

$$P_{\perp} = \frac{2}{3} \frac{r_c}{mc} \gamma^2 \left(\frac{d\mathbf{p}_{\perp}}{dt} \right)^2$$

Parallel case:



Radiation field cannot separate itself from the Coulomb field

$$P_{\parallel} = \frac{2}{3} \frac{r_{c}}{mc} \left(\frac{d\mathbf{p}_{\parallel}}{dt} \right)^{2}$$

negligible!

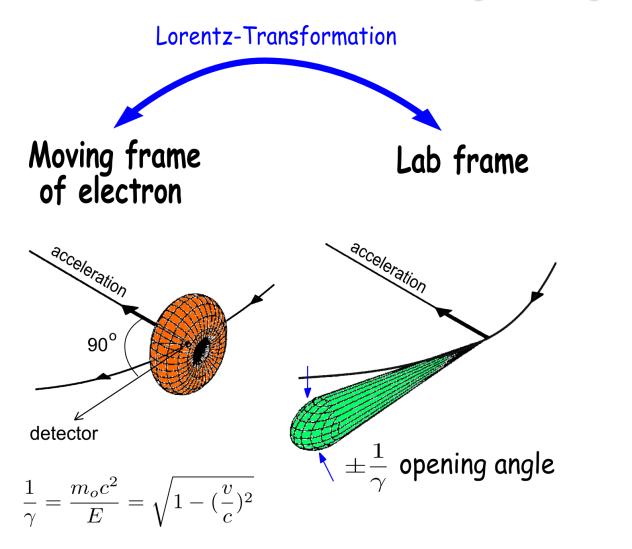
$$P_{\perp} = \frac{2}{3} r_c mc^3 \frac{(\beta \gamma)^4}{\rho^2} \quad \rho = curvature \ radius$$

(Weidemann 21.34)

 Radiated power for transverse acceleration increases dramatically with energy. This sets a practical limit for the maximum energy obtainable with a storage ring, but makes the construction of synchrotron light sources extremely appealing!

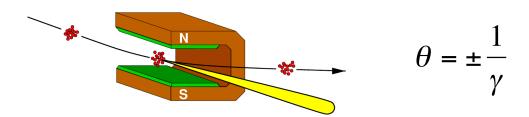
Properties of Synchrotron Radiation: Angular Distribution

Radiation becomes more focused at higher energies.

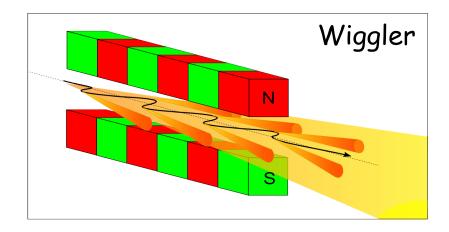


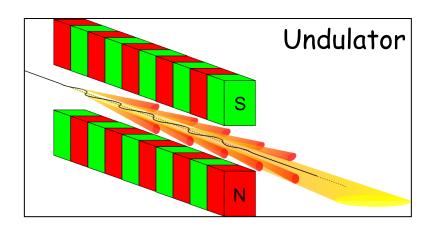
Accelerator Synchrotron Sources

Synchrotron radiation is generated in normal accelerator bending magnets



 There are also special magnets called wigglers and undulators which are designed for this purpose.

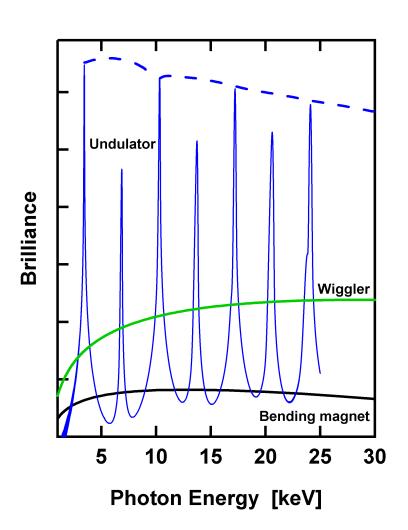




Insertion Devices

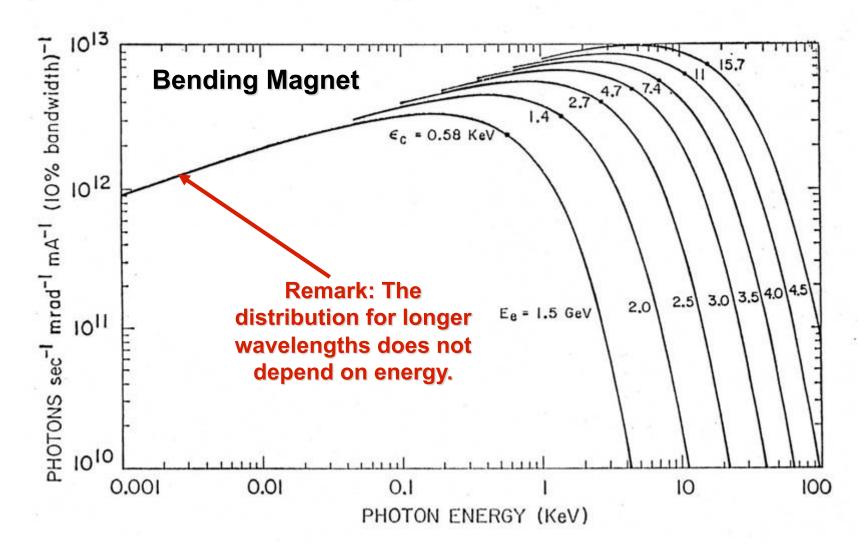
Undulator: Electron beam is periodically deflected by weak magnetic fields. Particle emits radiation at wavelength of the periodic motion, divided by γ^2 . So period of cm for magnets results in radiation in VUV to X-ray regime.

Wiggler: Electron beam is periodically deflected by strong bending magnets. Motion is no longer pure sinusoid and radiation spectrum is continuous up to a critical cut off photon energy $(\epsilon_{crit} \sim B\gamma^2)$. Spectrum is infrared to hard X-rays.

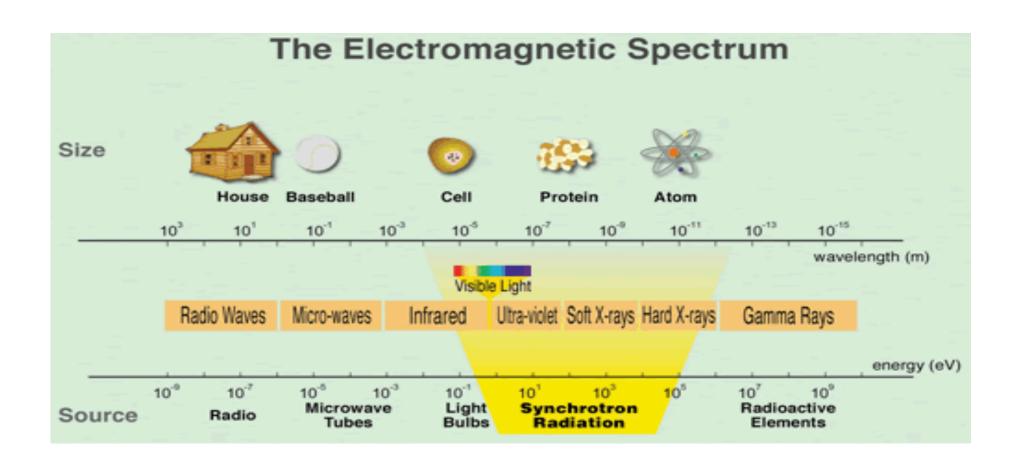


Synchrotron Radiation Spectrum

 For a wiggler or single bend magnet, the radiation spectrum depends on a single parameter, the critical energy



Properties of Synchrotron Radiation: Radiation Spectrum



SR Power and Energy Loss for Electrons

Instantaneous Synchrotron Radiation Power for a single electron

$$P_{\gamma}[\text{GeV/s}] = \frac{cC_{\gamma}}{2\pi} \frac{E^{4}[\text{GeV}^{4}]}{\rho^{2}[\text{m}^{2}]}$$
 (Weidemann 21.35)
 $C_{\gamma} = 8.8575 \times 10^{-5} \frac{\text{m}}{\text{GeV}^{3}}$

• Energy loss per turn for a single particle in an isomagnetic lattice with bending radius ρ is given by integrating P_{γ} over the lattice,

$$\Delta E[\text{GeV}] = C_{\gamma} \frac{E^{4}[\text{GeV}^{4}]}{\rho[\text{m}]}$$
 (Weidemann 21.41)

The average Radiated Power for an entire beam is,

$$P_{\gamma}[MW] = 8.8575 \times 10^{-2} \frac{E^{4}[GeV^{4}]}{\rho[m]} I[A]$$
 (Weidemann 21.43)

Radiated Power varies as the inverse fourth power of particle mass.
 Comparing radiated power from a proton vs. an electron, we have:

$$\frac{P_e}{P_p} = \left(\frac{m_p}{m_e}\right)^4 = 1836^4 = 1.1367 \times 10^{13}$$
 (Weidemann 21.38)

Examples

- Calculate SR radiated power for a 100 mA electron beam of 3 GeV in a storage ring with circumference 1 km (typical light source)
- Calculate SR radiated power for a 1 mA electron beam of 100 GeV in a storage ring with circumference 27 km (LEP storage ring)

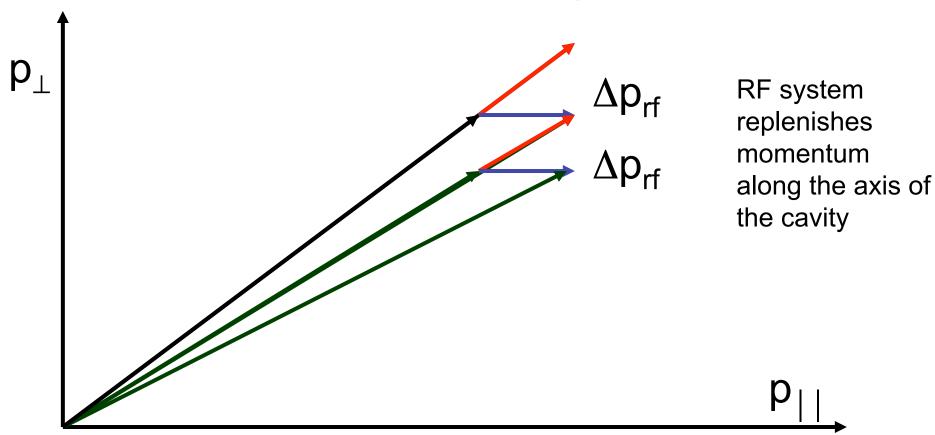
Circular vs. Linear Electron Accelerators

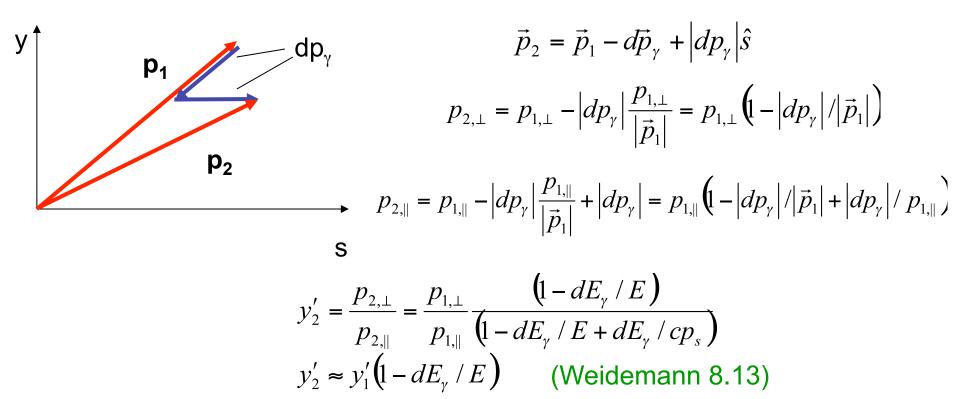
- At high enough electron energy, the radiated synchrotron power becomes impractical.
- Say you want to build the International Linear Collider as a circular collider, using the LEP tunnel
 - E=500 GeV, I=10 mA
- Gives P=13 GW!! This is ten times the power capacity of a commercial nuclear power plant
- Using two linacs avoids the necessity of bending these high energy beams, so synchrotron radiation is nearly eliminated

Consequences of Sychrotron Radiation: Radiation Damping

Consider betatron motion in the vertical plane

SR photons are emitted along direction of motion





The rate of change of slope with s is

$$y'' = \frac{dy'}{ds} = \frac{y_2' - y_1'}{ds} = \frac{y_1' (1 - dE_{\gamma} / E) - y_1'}{ds}$$
$$y'' = -y' \frac{1}{E} \frac{dE_{\gamma}}{ds}$$

We see now another new term in the equation of motion, one proportional to the instantaneous slope of the trajectory y':

$$y'' + y' \frac{1}{E} \frac{dE_{\gamma}}{ds} + ky = 0$$

This looks like the damped harmonic oscillator equation from classical mechanics:

$$m\ddot{x} + b\dot{x} + kx = 0$$

Which is often written like this

$$\ddot{x} + 2\alpha \dot{x} + \omega_0^2 x = 0$$

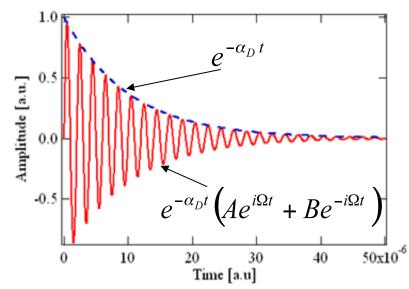
With

$$\alpha = \frac{b}{2m}$$

The solution is a damped harmonic oscillator

$$x = Ae^{-\alpha t}\cos(\omega_1 t + \phi_0) \qquad \omega_1 = \sqrt{\omega_0^2 - \alpha^2}$$

$$\omega_1 = \sqrt{\omega_0^2 - \alpha^2}$$



- The resulting vertical betatron motion is damped in time.
- The damping term we derived is in units of m⁻¹. We need the damping rate in sec⁻¹. They are related by velocity: $\alpha[sec^{-1}] = c\beta \alpha[m^{-1}]$

$$\alpha = \frac{c\beta}{2E} \frac{dE_{\gamma}}{ds} = \frac{c\beta}{2E} \frac{dE_{\gamma}}{c\beta dt} = \frac{1}{2E} \langle P_{\gamma} \rangle, \text{ where } \langle P_{\gamma} \rangle = \frac{dE}{dt}$$

$$\alpha = \frac{1}{\tau_{\gamma}} = \frac{1}{2\tau_{0}}$$

Where we have defined $\tau_0 = \frac{E}{\langle P_1 \rangle}$

$$\tau_0 = \frac{E}{\left\langle P_{\gamma} \right\rangle}$$

- Motion in the horizontal and longitudinal planes are damped also, but their derivation is more complex.
- The damping rates are:

$$\alpha_{y} = \frac{1}{2\tau_{0}} = \frac{1}{2\tau_{0}} J_{y}$$

$$\alpha_{x} = \frac{1}{2\tau_{0}} (1 - \vartheta) = \frac{1}{2\tau_{0}} J_{x}$$
 (Weidemann 8.27)
$$\alpha_{z} = \frac{1}{2\tau_{0}} (2 + \vartheta) = \frac{1}{2\tau_{0}} J_{z}$$

And they are related by Robinson's damping criterion $\sum J_i = 4$

$$\sum_{i} J_{i} = 4$$

The damping partition numbers depend on the lattice properties according to

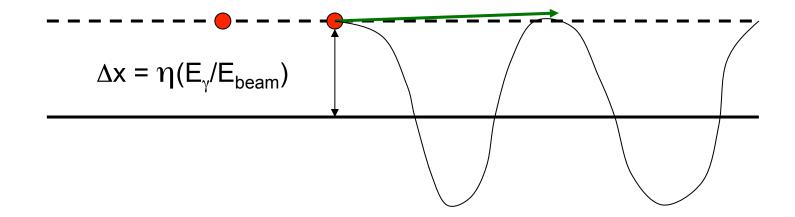
$$\vartheta = \frac{\oint \frac{\eta}{\rho^3} (1 + 2\rho^2 k) ds}{\oint \frac{ds}{\rho^2}}$$
 (Weidemann 8.25)

 You might imagine that oscillations in the beam would eventually be damped to zero, collapsing the beam to a single point in phase space. Is this possible?

Consequences of Synchrotron Radiation: Quantum Excitation

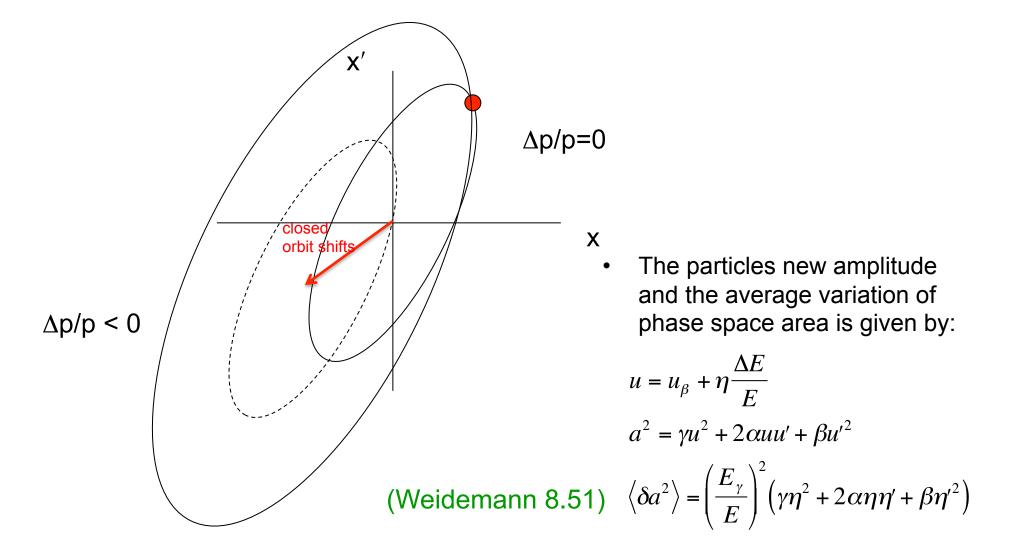
- Eventually, the individual beam particles become excited by the emission of synchrotron radiation, a process known as quantum excitation
- After emission of a SR photon, there is a change in reference path corresponding to the new particle energy.
- The particles position and angle in real-space do not change, but it acquires a betatron amplitude about the new reference orbit given by:

$$u_{\beta} = u_{\beta 0} + \eta \frac{E_{\gamma}}{E_{0}}$$
 $u'_{\beta} = u'_{\beta 0} + \eta' \frac{E_{\gamma}}{E_{0}}$ (Weidemann 8.50)



Quantum Excitation

The particle oscillates at a larger betatron amplitude after emission of a SR photon



Equilibrium Beam Parameters

- The beamsize in an accelerator where synchrotron radiation is important eventually reaches emittance values in all three planes that are an equilibrium between radiation damping and quantum excitation
- The equilibrium beam energy spread in an electron storage ring depends only on the beam energy and bending radius

$$\frac{\sigma_{\varepsilon}^{2}}{E^{2}} = C_{q} \frac{\gamma^{2}}{J_{z}} \frac{\langle 1/\rho^{3} \rangle}{\langle 1/\rho^{2} \rangle} \qquad C_{q} = 3.84 \times 10^{-13} \text{m}$$

The transverse beamsizes are given by

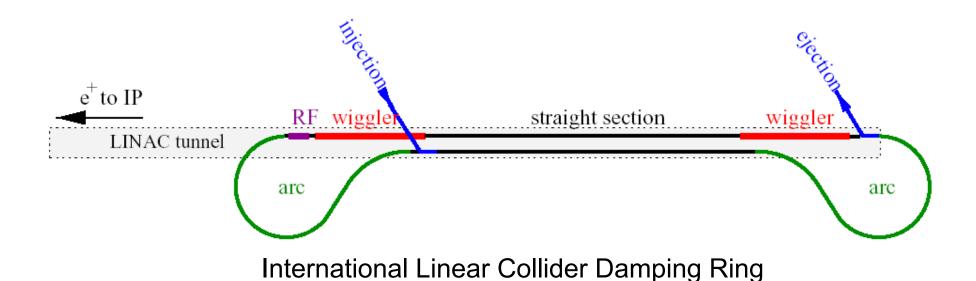
$$\varepsilon_{u} = \frac{\sigma_{u}^{2}}{\beta_{u}} = C_{q} \frac{\gamma^{2}}{J_{u}} \frac{\langle \mathbf{H} / \rho^{3} \rangle}{\langle 1 / \rho^{2} \rangle}$$
 (Weidemann 8.52, 8.58)
$$\mathbf{H}(s) = \beta \eta'^{2} + 2\alpha \eta \eta' + \gamma \eta^{2}$$

- For the vertical plane, dispersion and therefore H are zero. Does the vertical emittance shrink to zero?
- No: the vertical beamsize is theoretically limited by 1/γ angular emission of synchrotron radiation. In practice it is limited by more mundane issues like orbit errors

Auxillary Slides

Damping Ring

- A Damping Ring has parameters tuned to minimize quantum excitation while providing damping, so that the equilibrium emittance can be reduced.
- This can be accomplished by producing more synchrotron radiation with strong bending fields (wiggler magnets) placed in dispersion-free straight sections



Colliders and Luminosity

- Two beams of opposite charge counter-rotating in a storage ring follow the same trajectories and have the same focusing
- The beams collide and produce particle reactions with a rate given by

$$R = \sigma_{physics} \mathbf{L}$$

where

$$\mathbf{L} = f_{rev} \frac{N_1 N_2}{Area} = f_{rev} \frac{N_1 N_2}{4\pi \sigma_x \sigma_v}$$

 Beamsizes are reduced by special quadrupole configurations "lowbeta" to reduce the beamsizes at the collision points

